
tomomi@quark.phy.bnl.gov

1

RBC/UKQCD collaborations

B meson decay constants

and               matrix elements


with static heavy 

and domain-wall light quarks

Tomomi Ishikawa  (RBRC)

Lattice 2014 
2014/6/23-6/28, New York, USA

Collaborators:

Yasumichi Aoki, Taku Izubuchi,


Christoph Lehner and Amarjit Soni

�B = 2

mailto:tomomi@quark.phy.bnl.gov


            mixing: constrains on CKMB0 � B̄0

‣                 mixing                 

- Neutral mesons are not eigenstates of the weak interactions. 
- New Physics comes through loop diagrams. 
- Mass difference between physical eigenstates: 

-                mixing matrix elements (non-perturbative hadronic)
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‣ SU(3) breaking ratio 

‣ Other important quantities
- B meson decay constants 

- B-parameters

3

����
Vtd

Vts

���� = ⇠

s
�md

�ms

mBs

mBd

⇠ =
mBd

mBs

s
MBs

MBd

- The most attractive quantity in the mixing phenomena 
- Many of the uncertainties are canceled in the ratio. 
- In the simulation, fluctuations are largely canceled in the ratio.
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‣ Static approximation (leading order of HQET) 
-  Easy to implement (Static quark propagator is almost free.) 
- Symmetries (HQ spin symmetry + chiral symmetry) 

- Continuum limit exists even in the perturbative renormalization. 
- But, we always have the error coming from static approx. 

‣ Ratio quantities (   ,             ) in the static limit 
-  Error coming from static approximation is reduced to:
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‣ Static limit as a valuable anchor point 
- HQ expansion: 

- Equivalent to:
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‣ Standard static action with link smearing 

 Reduced 1/a power divergence. 

‣ Domain-wall light quark action 
 5 dimensional, controllable approximate chiral symmetry 
 Unphysical operator mixing does not occur. 

‣ Iwasaki gluon action
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‣ Gluon ensemble 
-  Nf=2+1 dynamical DWF + Iwasaki gluon (RBC-UKQCD) 

‣ Measurement parameters 

- Gaussian smearing on fermion field (width ~ 0.45 fm)
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Measurement

Table 1: 2 + 1 flavor dynamical DWF ensembles by RBC-UKQCD Collaborations [1]. mres is a residual mass in
the DWF. aml and amh represent the sea ud and sea s quark mass parameter, respectively.

label β L3 × T × Ls a−1 [GeV] a [fm] amres ml/mh mπ [MeV] mπaL
24c1 2.13 243 × 64× 16 1.729(25) 0.114 0.003152(43) 0.005/0.04 327 4.54
24c2 0.01/0.04 418 4.79
32c1 2.25 323 × 64× 16 2.280(28) 0.0864 0.0006664(76) 0.004/0.03 289 4.05
32c2 0.006/0.03 344 4.83
32c3 0.008/0.03 393 5.52

1/a power divergence. This situation has been significantly improved, since ALPHA collaboration introduced link
smearing technique in the static action, which partly cured the S/N.

In this study, we calculate B meson decay constants and neutral B meson mixing matrix elements using the
static approximation. The static approximation always has O(ΛQCD/mb) ∼ 10% uncertainty, since physical b
quark mass is not infinite. To reduce this uncertainty in the HQET approach, higher order contributions in the
1/mb expansion needs to be included. Taking into account these contributions requires nonperturbative matching
with continuum using Schrëdinger functional with step scaling technique, which is seemingly hard task. Instead,
we stay in static limit aiming at a use for interpolation to physical b quark mass combining with lighter quark
mass simulation. The static limit value would become a good reference point, if the calculation is made with high
precision. It also gives good comparison to the other approaches, such as Relativistic Heavy Quark (RHQ). For
ratio quantities like ξ, the uncertainty coming from static approximation is down to around 2% level:
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which means the static results could be competitive to other lattice approaches for heavy quark physics.

Simulation setup

! Lattice actions

We perform the lattice QCD simulation on HQET side. We employ the standard static quark action with gluon link
smearing for b quark. As the link smearing, we use HYP1 and HYP2 smearing. The link smearing is introduced
aiming at a reduction of the power divergences. For the light quark (u, d and s) sector, we use domain-wall fermion
(DWF) formalism. The DWF is 5 dimensional realization of chiral fermion, which holds controllable approximate
chiral symmetry at large enough fifth-dimension size. The chiral symmetry is important to prevent unnecessary
operator mixing. For the gluon part, we use Iwasaki action.

! Gluon ensemble and measurement setup

In our simulation, 2 + 1 flavor dynamical DWF gluon ensemble generated by RBC-UKQCD Collaborations [1] is
used. The ensemble parameters are shown in Tab. 1. Two lattice spacings a ∼ 0.114 [fm] and 0.0864 [fm] are used
to take a continuum limit. We label the coarser and finer lattices as “24c” and “32c”, respectively. The physical
box size is set to be modest, which is around 2.75 [fm]. The size of the fifth dimension is Ls = 16 making the chiral
symmetry breaking small enough. Degenerate u and d quark mass parameters are chosen so that the simulation
covers the pion mass range of 290-420 [MeV]. The smallest value of mπaL is about 4, which implies finite volume
effect would be small at simulation points in this work.
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Table 2: Measurement parameters. amq represents valence the quark mass parameter. ∆t denotes source-sink
point separation in three-point correlators.

label amq Measured MD traj # of data # of src ∆t
24c1 0.005, 0.034, 0.040 900–8980 every 40 203 4 20
24c2 0.010, 0.034, 0.040 1460–8540 every 40 178 2
32c1 0.004, 0.027, 0.030 520–6800 every 20 315 1 24
32c2 0.006, 0.027, 0.030 1000–7220 every 20 312 1
32c2 0.008, 0.027, 0.030 520–5540 every 20 252 1

Measurement parameters are presented in Tab. 2. In the measurement, we use gauge-invariant Gaussian
smearing for source and sink operators. The Gaussian width is set to be around 0.45 fm.

Matching procedure
In this work, we adopt a two step matching: the first is a matching between QCD and HQET in continuum, the
second is a matching between continuum and lattice in HQET. The matching is made by one-loop perturbation.
We here summarize key points of the matching.

• The QCD operators in the continuum are renormalized in MS(NDR) scheme at µb = mb, b quark mass
scale. Fierz transformations in arbitrary dimensions are specified in the NDR scheme by Buras and Weisz
introducing evanescent operators.

• The HQET operators in the continuum are also renormalized in MS(NDR) scheme at some scale µ.

• The matching between QCD and HQET is performed at scale µ = mb to avoid a large logarithm of µ/mb.
We then use renormalization group running in the HQET to go down to a lower energy scale.

• Matching HQET operators between continuum and lattice is perturbatively carried out at scale µ = a−1,
where a denotes a lattice spacing.

• In the matching of HQET operators between continuum and lattice, O(a) discretization errors are taken into
account. We employ on-shell O(a) improvement program, in which we impose the equation of motion on the
external heavy and light quark lines. In the improvement, we include both O(pa) and O(ma) contributions,
where p and m depict light quark momentum and mass, respectively [2].

Chiral and continuum extrapolation

! NLO SU(2) HMχPT

Physical quantities at simulated light quark mass points are extrapolated to physical degenerate u and d quark
mass value. In this work, we use next-to-leading order SU(2) heavy-light meson chiral perturbation theory (NLO
SU(2) HMχPT) described in Ref. [3]. In SU(2)χPT, s quark is integrated out of the theory; effects from s quark
are included in low-energy constants. The SU(2)χPT formula is obtained from SU(3)χPT assuming u and d quark
masses are much smaller than s quark mass. The formula does not depend on s quark mass in explicit way. The
convergence of the chiral fit is improved by using the SU(2)χPT as long as the u and d quark mass is sufficiently
small [4]. In Ref. [4], it is argued that the RBC/UKQCD DWF ensemble does not show convergence of NLO
SU(2)χPT above the pion mass of 420 MeV for the light hadron masses and decay constants. The ensembles we
use in this work stay below that border.
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[Phys. Rev. D 83, 074508 (2011)]



‣ Operators 
-  2PT correlation functions 

- 3PT correlation functions
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‣ Matching (continuum QCD and lattice HQET) 
- Static with link smearing + DWF, incl. O(a) error, one-loop

‣ Correlator fitting
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‣ Combined fits
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Chiral and continuum extrapolation

Linear fits are also used to estimate an uncertainty from chiral fits.

NLO SU(2) HMChPT
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‣ Final results in the static limit
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Results

Error budget    

(O(1/m) errors are not included in the error.)
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‣ Comparison
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‣ Comparison
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‣ Improvements for next
- All-Mode-Averaging (AMA) 

- Almost physical pion ensemble 

- Non-perturbative renormalization 

- Including          correction by simulations in lower mass region 
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To more accuracy

[T. Blum, T. Izubuchi, E. Shintani (2012)]

improved operator using lattice symmetry              good statistics

(Mobius domain-wall (RBC/UKQCD))

        power divergence needs to introduce additional renormalization 
condition than usual one.

1/mb

1/a

action 1/a [Gev] lattice size [fm] m⇡ [MeV]

MDWF+ IW 1.75 48

3 ⇥ 96⇥ 24 5.5 138

MDWF+ IW 2.31 64

3 ⇥ 128⇥ 12 5.5 139



‣ AMA 
-  64 source points with sloppy CG 
-  Deflated sloppy CG with res ~ 3e-3 for ud quark 
-  Sloppy CG with res ~ 1e-4 for strange quark
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‣ AMA
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To more accuracy
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‣ AMA 

-  Still on-going calculation to increase statistics and number of 
mass parameters. 

-  Currently the cost of AMA is less than the previous one.
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To more accuracy
very preliminary
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‣ B meson decay constants and neutral B meson mixing matrix 
elements in the continuum limit are obtained using static 
approximation. 

‣ Decay constants has ~10% deviation from physical b results, 
possibly due to 1/mb error. 

‣ Ratio quantities does not have significant deviation from physical b 
results, because 1/mb error is largely suppressed. 

‣ Reducing statistical and chiral extrapolation error is important to 
high precision. 

‣ For non-ratio quantities, non-perturbative matching is also 
important. 

‣ AMA can reduce the statistical error. 

‣ Planning calculations at physical pion. 

‣ Planning non-perturbative renormalization.
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Summary and outlook


